Application of Thermo-Calc and DICTRA in an Industrial Setting

Sebastian Piegert

Thermo-Calc/DICTRA Users Meeting
Aachen
2011-09-08/09
Outline

- Introduction
- MCrAlY Coating Development
 - Background
 - Set-Up of DICTRA Model
 - Results of Calculations
 - Experimental Validation
- Summary
Areas of Application for Thermo-Calc and DICTRA

- Heat Treatment Optimisation
- Estimation of non Conformances and Failure Analysis
- Braze Alloys and Weld Fillers Development
- Base Material Characterisation
- Base Alloy Development
- Coating-Substrate Interaction

Thermo-Calc Version S with TTNi 7 Database
DICTRA 26 with MobNi1 Database

Copyright © Siemens AG 2009. All rights reserved.
MCrAlY Protective Coatings

Function:
- Corrosion and oxidation protection
- Al and Cr reservoir for formation of Al_2O_3 and Cr_2O_3 protective scales
- Bond coat function for TBC

Composition (example):
- Co - 31Ni - 27Cr - 7.5Al - 0.5Y - 0.5Si

Microstructure:
- Cr and Al trapped in second phases (β (NiAl) or $\gamma’$ (Ni$_3$Al)) in γ Ni-matrix

Application
- Thermal spraying (VPS or LPPS)
- Bonding heat treatment
Problem Statement

Currently used system (baseline):
- Ni - Co - Cr - Al - 1.5Re - Y

Problem
- Re price extremely high

Request
- Develop coating free of Re

Approach
- variation of Cr content
- slight increase of Al concentration

Base material PWA 1483 SX
- Ni - 9Co - 12.2Cr - 1.9Mo - 3.8W - 5Ta - 3.6Al - 4.1Ti
Phase Diagrams of MCrAlY Alloys

- coating composed of β- and γ-phase above 900 °C
- near eutectic systems
- simulation of substrate-coating interaction only with single phase systems so far
Results of Ageing Trials at 1100 °C

Baseline material
- Precipitate free zone
- High γ'-content directly on interface between γ-layer and $\gamma - \gamma'$-layer

Alloy 4 (high Cr)
- Almost no precipitate free layer in coating
- Large amount of base material transforms
- Kirkendall porosity in Alloy 4 already after short times (« 300 h)

Alloy 1 (low Cr)
- Similar behaviour to baseline
- No porosity
Set-Up

- single cell problem (9 (8) species)
- double geometric grid
- element distribution via "high step" function
- effective diffusion in dispersed system with γ' and β:

$$D_{eff}^{upper} = \left(1 + \frac{3 - 3f_{\gamma}}{f_{\gamma} - \frac{10}{3}}\right)D_{\gamma}$$

Boundary Conditions
- $T = 1100 \, ^{\circ}C$, $t_{max} = 500 - 700 \, h$
- isothermal, i.e. heating and cooling processes are not taken into account

Phase Distribution

- **Alloy 1 and baseline behave similar**
 - precipitate free zone
 - pileup of γ' at the interface
- **Alloy 4**
 - no precipitate free zone
 - moving interface
Tracking of Kirkendall Porosity

Alloy 1 (low Cr) baseline Alloy 4 (high Cr)

Change of the local vacancy content at a distinct position

\[\Delta c_{V_a} = \frac{\partial (-J_{V_a})}{\partial z} \]

Content of vacancies at a distinct position **

\[y_{V_a} = \int_0^t \frac{\partial (-J_{V_a})}{\partial z} \, dt \]

** Höglund and Ågren: Acta mater 49 (2001) 1311-1317
Experimental Validation (Composition Profiles)

- Al profile
- Cr profile
- Ti profile

Baseline

Alloy 4 (high Cr)
Experimental Validation (Microstructure)

SEM images vs. amount of phases

Baseline

Alloy 4 (high Cr)

Copyright © Siemens AG 2009. All rights reserved.
Summary

- Thermo-Calc helps identifying MCrAlY coating systems

- interdiffusion between MCrAlY and substrate can be handled
 - labyrinth factors for “diffusion none” phases
 - complex material systems (9 species)
 - TCP phases and minor elements not taken into account
 - qualitative prediction of Kirkendall porosity

- experimental validation
 - shape of composition profiles met
 - no general labyrinth factor applicable
 - distribution of phases qualitatively shown

- ROI: significant reduction of experiments ➔ faster time to market (>> 9:1)
Thank you for your attention!
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.