Thermodynamic, kinetic and phase transformation calculations in the field of single crystal nickel based superalloys

R. Rettig, M.M. Franke, R.F. Singer
Institute of Science and Technology of Metals (WTM)
Department of Materials Science and Engineering
University of Erlangen-Nürnberg
Germany

ThermoCalc User Meeting - Aachen
5th September 2013
Agenda

- Nickel-based alloys as a key for energy production
- Thermodynamic and kinetic databases for alloy development
- Heat treatment modelling
- Simulation of microstructure evolution
- Summary
Combined cycle power plant

Efficiency (2007): ca. 58% (330 g CO₂ / kWh)
Aim 2020: ca. 63% (300 g CO₂ / kWh)

1st stage blade
250 mm, 4.3 kg
1 MW
50 Hz
10 t
1000 °C
3 yrs
10,000,- $
Efficiency of fossil power plants

Development of efficiency

Relation of efficiency and process temperature

turbine outlet temperature is 500 °C

data according to Siemens AG and DPG (2005)

⇒ efficiency increase is always related to higher material temperatures
Development of nickel-based superalloys

- Single crystalline
- Directionally solidified
- Polycrystalline
- Wrought alloys

Temperature capability of nickel-based superalloys

Year of development

Service temperature

Harada et al. (2003) IGTC2003
Turbine blades

1st stage, SGT5-4000F, Siemens AG

polycrystalline, directionally solidified, single crystalline
Turbine blades

1st stage, SGT5-4000F, Siemens AG

- polycrystalline
- directionally solidified
- single crystalline
Single crystal nickel-based superalloys

γ + γ'-microstructure gives unique creep properties

typical alloying elements (ca. 8 – 10):
Ni-Al-Co-Cr-Mo-Re-Ru-Ta-Ti-W-B-Zr-Y
Material / process simulation at Institute WTM

thermodynamics
 ThermoCalc

process simulation (temperature-, fluid flow)
 - *Flow3D*
 - *ProCAST*
 - *inhouse Lattice Boltzmann code*

diffusion
 DICTRA

phase transformations
 TC-PRISMA

microstructure
 MICRESS

mechanics (finite elements)
 ABAQUS

computer-aided alloy development
 inhouse software (MultOPT)

Institute WTM / NMF
Agenda

- Nickel-based alloys as a key for energy production
- Thermodynamic and kinetic databases for alloy development
- Heat treatment modelling
- Simulation of microstructure evolution
- Summary
Fields of application

- **Prediction of:***
 - Liquidus (melting) temperature
 - \(\gamma'\)-phase fraction
 - \(\gamma'\)-solvus temperature
 - TCP-phase solvus temperatures

- **Limitations:***
 - "Exotic" alloying elements are not available
 - Most commercial databases are not changable and the exact parameters are often not accessible
 - Calculations for untypical compositions may be critical
 - Calculations are only valid for stable equilibrium
Verification of commercial database TTNi7

Phase compositions calculated with TTNi7

Diffusion database development for Ni-Ge

![Graph showing diffusion coefficients for Ni-Ge alloys at different temperatures.](graph.png)

Interdiffusion

- NiGe8
- NiGe1
- PWA1483
- René N5

Diffusion Coefficient $D / \text{m}^2\text{s}^{-1}$

1/T / 1/K

- 6.5×10^{-4}
- 6.7×10^{-4}
- 7.0×10^{-4}
- 7.2×10^{-4}

Ge Impurity

- $1250 ^\circ\text{C}$
- $1200 ^\circ\text{C}$
- $1150 ^\circ\text{C}$

Self Diffusion

- Rettig et al. (2011)
- Hirano et al. (1962)
- Mantl et al. (1983)

DICTRA-database from diffusion couple measurements
Agenda

- Nickel-based alloys as a key for energy production
- Thermodynamic and kinetic databases for alloy development
- Heat treatment modelling
- Simulation of microstructure evolution
- Summary
Agenda

- Nickel-based alloys as a key for energy production
- Thermodynamic and kinetic databases for alloy development
- Heat treatment modelling
- Simulation of microstructure evolution
- Summary
A multicomponent, multiphase precipitation model

Idea of model

- Loop for all timesteps
 - Loop for all precipitate types
 - New nucleation
 - Growth of all existing particles
 - Total removal of solute from matrix
 - Driving force from CALPHAD
 - Nucleation rate
 - Loop for all particles
 - Growth rate using CALPHAD
 - Volume change
 - Solute removal from matrix

red: new multicomponent model
A multicomponent, multiphase precipitation model

Idea of model

Loop for all timesteps

Loop for all precipitate types

New nucleation

Growth of all existing particles

Total removal of solute from matrix

Driving force from CALPHAD

Nucleation rate

Loop for all particles

Growth rate using CALPHAD

Volume change

Solute removal from matrix

red: new multicomponent model
A multicomponent, multiphase precipitation model

Idea of model

Loop for all timesteps

Loop for all precipitate types

New nucleation

Growth of all existing particles

Total removal of solute from matrix

Driving force from CALPHAD

Nucleation rate

Loop for all particles

Growth rate using CALPHAD

Volume change

Solute removal from matrix

red: new multicomponent model
Modelling of TCP-phase precipitation

multicomponent Kampmann-Wagner-model (coupled to ThermoCalc and DICTRA)

databases: TTNi8 + MobNi1

FIB-tomography

9 x 7 x 6 μm³

experimental 3rd generation alloy
ASTRA1-20

K. Matuszewski, R. Rettig et al.

experimental data: Sato et al. (2006) Scripta Mat

9 x 7 x 6 μm³
Modelling of TCP-phase precipitation
Driving force influences precipitate length

the large difference in the driving force in both alloys is the reason for the very different precipitate lengths

Agenda

- Nickel-based alloys as a key for energy production
- Thermodynamic and kinetic databases for alloy development
- Heat treatment modelling
- Simulation of microstructure evolution

Summary
Summary

- Fields of application of thermodynamic and kinetic simulations
- Advanced modelling using CALPHAD-calculations as a basis
 - Heat treatment simulation
 - Precipitation simulation